Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,

gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden 1o Washington Headguarters Service, Directorate for Information Operations and Reports,

1215 Jeflerson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and 1o the Office of Management and Budget,

Paperwork Reduction Project (0704-0188) Washington, DC 20503.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT D&ZE T ¥/X 3. DATES COVERED (From - To)
VY-09-2002 Final Techrnical Nov 1998-Sept 2002
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
: . NOU014-99-1-0131
Transtformational Development of Reactive 55 GRANT NUMBER
Systems.

Sc. PROGRAM ELEMENT NUMBER

BAA 98-019
6. AUTHOR(S) 5d. PROJECT NUMBER

Zuck; " Lé¬e

Pnueli, Anmir S5e. TASK NUMBER

Goldberg, Benjamin

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
. REPORT NUMBER
NYU, Courant Institute ot Math. Sciences
251 Mercer Street F0931
New York, NY 10012
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)
ONR, Mathematiés, Computer, & Infc. Sciences ONR
Division ONR 311 11, SPONSORING/MONITORING
800 N. Quincy Street AGENCY REPORT NUMBER
Arlington, VA 22217-5660 NO0014-99-1-0131

12. DISTRIBUTION AVAILABILITY STATEMENT

¥ kppvwed fov publc rekase .

13. SUPPLEMENTARY NOTES
NA

14. ABSTRACT
This is the final technical report tor the project. It presents an‘enumeration
of the research resuits ot the etfort, including & list ot papers published
and & briet summery of the content of the papers. The results were primarily
in the area ot compiler validation, format methods, and veritication. *
Appiications ot the work include reactive systems, as mentioned in the titie
of the effort, as well as more geners: scttware systems.

15. SUBJECT TERMS

Compiler validetion, torm&i methods, verificetion

19a. NAME OF RESPONSIBLE PERSON
Benjamin Goldberg

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER

a REPORT [b. ABSTRACT |c. THIS PAGE ABSTRACT OF PAGES
6 18b. TELEPONE NUMBER (/nclude area code)

(212) ©98-3495

Standard Form 298 (Rev. 8-98)
2 0 0 2 0 9 6 0 8 4 Prescribed by ANSI-Sid Z39-18

Transformational Development of Reactive Systems

Final Technical Report

Lenore Zuck, Amir Pnueli, and Benjamin Goldberg
Department of Computer Science
Courant Institute of Mathematial Sciences
New York University
{zuck,amir,goldberg}@cs.nyu.edu

1 Introduction

- This report provides an enumeration of the technical contributions made by Professors
Amir Pnueli, Lenore Zuck, and Benjamin Goldberg with the support of the ONR grant.
This ONR grant was originally awarded to Professor Robert Paige, to perform work
in the area of transformational programming of reactive systems. However, due to
the passing of Professor Paige, and the assumption of the grant by Professors Pnueli,
Zuck, and Goldberg, there was a shift in the focus of the project to better correspond
to the expertise of the participants. A more apt title of the project became “The
Development and Application of Formal Method Techniques for Reactive Systems”.
The work spans new methods for verifying software, the theory and implementation of
compiler validation, and related techniques. For each paper published with the support
of the ONR grant, below is the listing of where the paper appeared, along with a brief
description of the work described in the paper

2 Research Results

" 2.1 Compiler Validation

L. Zuck, A. Pnueli, Y. Fang, and B. Goldberg, “VOC: A Translation Valida-
tor for Optimizing Compilers”. In Proceedings of the workshop on Compiler
Optimization Meets Compiler Verificaiton (COCV) 2002, ENTCS 65(2).
April 2002. Also submitted for consideration to J ournal of Universal Com-
puter Science (J. UCS). June 2002.

DISTRIBUTION STATEMENT A:
Approved for Public Release -
Distribution Unlimited

There is a growing awareness, both in industry and academia, of the crucial role of
formally proving the correctness of safety-critical components of systems. Most formal
verification methods verify the correctness of a high-level representation of the system
against a given specification. However, if one wishes to infer from such a verification
the correctness of the code which runs on the actual target architecture, it is essential
to prove that the high-level representation is correctly implemented at the lower level.
That is, it is essential to verify the the correctness of the translation from the high-level
source-code representation to the object code, a translation which is typically performed
by a compiler (or a code generator in case the source is a specification rather than a
programming language).

Formally verifying a full-fledged optimizing compiler, as one would verify any other
large program, is not feasible due to its size, ongoing evolution and modification, and,
possibly, proprietary considerations. The translation validation method used in this
research is a novel approach that offers an alternative to the verification of translators
in general and compilers in particular. According to the translation validation approach,
rather than verifying the compiler itself, one constructs a validation tool which, after
every run of the compiler, formally confirms that the target code produced on that run
is a correct translation of the source program.

We have developed a methodology VOC for the translation validation of optimiz-
ing compilers. We distinguish between structure preserving optimizations, for which we
establish a simulation relation between the source and target code based on computa-
tional induction, and structure modifying optimizations, for which we develop specialized
“meta-rules”. We have alos implemented em VOCS64--a prototype translation valida-
tor that automatically produces verification conditions for the global optimizations of
the SGI Pro-64 compiler.

L. Zuck, A. Pnueli, Y. Fang, B. Goldberg and Y. Hu, “Translation and Run-
Time Validation of Optimized code”, In Proceedings of the Workshop on
Runtime Verification (RV) 2002, ENTCS 70(4). July 2002.

In additionto expanding the work on compiler validation, this paper described our
work work on run-time validation of speculative loop optimizations, which involves us-

- ing run-time tests to ensure the correctness of loop optimizations which neither the

compiler nor compiler-validation techniques can guarantee the correctness of. Unlike
compiler validation, run-time validation has not only the task of determining when an
optimization has generated incorrect code, but also has the task of recovering from the
optimization without aborting the program or producing an incorrect result. This tech-
nique has been applied to several loop optimizations, including loop interchange, loop
tiling, and software pipelining and appears to be quite promising.

2.2 Formal Methods and Verification

D. Peled, A. Pnueli, and L. Zuck, “From falsification to verification,”, Pro-
ceedings of the 21° Conference on Foundations of Software Technology and
Theoretical Computer Science (FST TCS), Springer Verlag LNCS 2245, De-
cember 2001, pages 292-304.

In this paper, we described an improvement to the linear temporal logic model
checking process, enhancing ability to automatically generate a deductive proof that
the system meets its temporal specification. We emphasized the point of view that
model checking can also be used to justify why the system actually works. We showed
that, by exploiting the information in the graph that is generated during the search
for counterexamples, when the search of counterexamples fails, we can generate a fully
deductive proof that the system meets its specification.

D. Peled and L. Zuck, “From model checking to a temporal proof,” in Pro-
ceedings of the 8'h International SPIN Workshop on Model Checking of
Software, Springer Verlag LNCS 2057, May 2001, pages 1-14.

Model checking is used to automatically verify temporal properties of finite state
systems. It is usually considered to be ‘successful’, when an error, in the form of
a counterexample to the checked property, is found. In this paper, presented the dual
approach, where, in the absence of a counterexample, we automatically generate a proof
that the checked property is satisfied by the given system. Such a proof can be used
to obtain intuition about the verified system. This approach can be added as a simple
extension to existing model checking tools.

A. Pnueli, S. Ruah, and L. Zuck, “Automatic : deductive verification with
invisible invariants,” in Proceedings of the 7" International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS

2001). Lecture Notes in Computer Science 2031 Springer, April 2001, pages

82-97.

The paper presented a method for the automatic verification of a certain class of
parameterized systems. These are bounded-data systems consisting of Nprocesses(N
being the parameter), where each process is finite-state. First, we showed that if we use
the standard deductive INV rule for proving invariance properties, then all the gener-
ated verification conditions can be automatically resolved by finite-state (BDD-based)

methods with no need for interactive theorem proving. Next, we showed how to use
model-checking techniques over finite (and small) instances of the parameterized sys-
tem in order to derive candidates for invariant assertions. Combining this automatic
computation of invariants with the previously mentioned resolution of the VCs (verifi-
cation conditions) yields a (necessarily) incomplete but fully automatic sound method
for verifying bounded-data parameterized systems. The generated invariants can be
transferred to the VC-validation phase without ever been examined by the user, which
explains why we refer to them as “invisible”.

We illustrated the method on a non-trivial example of a cache protocol, provided by
Steve German of IBM’s T.J. Watson Research Center.

T. Arons, A. Pnueli, S. Ruah, J. Xu, and L. Zuck, “Parameterized veri-
fication with automatically computed inductive assertions,” in Proceedings
of the 13" International Conference on Computer Aided Verification (CAV
2001), Springer LNCS 2102, July 2001, pages 221-234.

The paper presented a method, called the method of verification by invisible in-
variants, for the automatic verification of a large class of parameterized systems. The
method is based on the automatic calculation of candidate inductive assertions and
checking for their inductiveness, using symbolic model-checking techniques for both
tasks. First, we showed how to use model-checking techniques over finite (and small)
instances of the parameterized system in order to derive candidates for invariant as-
sertions. Next, we showed that the premises of the standard deductive INV rule for
proving invariance properties can be automatically resolved by finite-state (BDD-based)
methods with no need for interactive theorem proving. Combining the automatic com-
putation of invariants with the automatic resolution of the VCs (verification conditions)
yields a (necessarily) incomplete but fully automatic sound method for verifying large
classes of parameterized systems. The generated invariants can be transferred to the
VC-validation phase without ever been examined by the user, which explains why we
refer to them as “invisible”. The efficacy of the method is demonstrated by automatic
verification of diverse parameterized systems in a fully automatic and efficient manner.

AY. Kesten, A. Pnueli, E. Shahar, and L. Zuck, “Network Invariants in Ac-
tion”. To appear in CONCUR 2002.

The paper presented the method of network invariants for verifying a wide spec-
trum of properties, including liveness, of parameterized systems. This method can be
applied to establish the validity of the property over a system S (n) for every value of
the parameter n. The application of the method requires checking abstraction relations

between two finite-state systems. We presented a proof rule, based on the method of
Abstraction Mapping by Abadi and Lamport, which has been implemented on the TLV
model checker and incorporates both history and prophecy variables. The effectiveness
of the network invariant method is illustrated on several examples, including a deter-
ministic and probabilistic versions of the dining-philosophers problem and an algorithm
for distributed termination detection.

A. Pnueli, J. Xu, and L. Zuck, “The (0,1, 0)-Counter Abstraction”, Pro-
ceedings of the 14" Conference on Computer Aided Verification (CAV’02),
Springer Verlag LNCS 2404, July 2002, pages 107-122.

In this paper, we introduced the (0, 1,00)-counter abstraction method by which a
parameterized system of unbounded size is abstracted into a finite-state system. Assum-
ing that each process in the parameterized system is finite-state, the abstract variables
are limited counters which count, for each local state s of a process, the number of
processes which currently are in local state s. The counters are saturated at 2. The
emphasis of the paper was on the derivation of an adequate and sound set of fairness
requirements (both weak and strong) that enable proofs of liveness properties of the
abstract system, from which we can safely conclude a corresponding liveness property
of the original parameterized system. We illustrated the method on few parameter-
ized systems, including Szymanski’s Algorithm for mutual exclusion. The method was
also extended to deal with parameterized systems whose processes may have infinitely
many local states, such as the Bakery Algorithm, by choosing few “interesting” state
assertions and (0, 1, co)-counting the number of processes satisfying them.

L. Zuck, A. Pnueli, and Y. Kesten, “Automatic Verification of Probabilistic
Free Choice”, in Proceedsings of the ' International Workshop on Verifica-
tion, Model Checking, and Abstract Interpretation (VMCAI) 2002, Venice,
January 2002. Springer Verlag LNCS volume 2294.

In this paper, we described an automatic method for establishing P-validity (va-
lidity with probability 1) of simple temporal properties over finite-state probabilistic
‘systems. The new approach replaced P-validity with validity over a non-probabilistic
version of the system, in which probabilistic choices are replaced by non-deterministic
choices constrained by compassion (strong fairness) requirements. “Simple” properties
are temporal properties whose only temporal operators are (eventually) and its dual
(always). In general, the appropriate compassion requirements are “global,” since they
involve global states of the system. Yet, in many cases they can be transformed into “lo-
cal” requirements, which enables their verification by model checkers. We demonstrated

our methodology of translating the problem of P-validity into that of verification of a
system with local compassion requirement on the “courteous philosophers” algorithm of
[LR81}, a parameterized probabilistic system that is notoriously difficult to verify, and
outlined a verification of the algorithm that was obtained by the TLV model checker.

T. Arons, A. Pnueli, and L. Zuck, “Verification by Probabilistic Abstrac-
tion”, Submitted for consideration to POPL’03.

This paper described automatic verification of liveness properties with probability 1,
over parameterized programs that include probabilistic transitions. The paper proposed
a two novel approaches to the problem: The first uses the measure theoretic notion of
validity with probability 1, and allows for a Planner that occasionally determines the
outcome of a finite sequence of “random” choices, while the other random choices are
performed non-deterministically; in fact, they can be determined by an adversary. Using
a Planner, a probabilistic protocol can be treated just like a non-probabilistic one and
verified as such. The second approach is based on a notion of fairness that is sound
and complete for verifying simple temporal properties over finite-state systems. The

.paper presented a symbolic model checker based on such fairness. It also shows how the

network invariant approach accommodate probabilistic protocols.

